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Sparse Nonparametric Graphical Models
John Lafferty, Han Liu and Larry Wasserman

Abstract. We present some nonparametric methods for graphical modeling.
In the discrete case, where the data are binary or drawn from a finite alpha-
bet, Markov random fields are already essentially nonparametric, since the
cliques can take only a finite number of values. Continuous data are differ-
ent. The Gaussian graphical model is the standard parametric model for con-
tinuous data, but it makes distributional assumptions that are often unrealis-
tic. We discuss two approaches to building more flexible graphical models.
One allows arbitrary graphs and a nonparametric extension of the Gaussian;
the other uses kernel density estimation and restricts the graphs to trees and
forests. Examples of both methods are presented. We also discuss possible
future research directions for nonparametric graphical modeling.

Key words and phrases: Kernel density estimation, Gaussian copula, high-
dimensional inference, undirected graphical model, oracle inequality, consis-
tency.

1. INTRODUCTION

This paper presents two methods for constructing
nonparametric graphical models for continuous data.
In the discrete case, where the data are binary or drawn
from a finite alphabet, Markov random fields or log-
linear models are already essentially nonparametric,
since the cliques can take only a finite number of
values. Continuous data are different. The Gaussian
graphical model is the standard parametric model for
continuous data, but it makes distributional assump-
tions that are typically unrealistic. Yet few practical
alternatives to the Gaussian graphical model exist, par-
ticularly for high-dimensional data. We discuss two ap-
proaches to building more flexible graphical models
that exploit sparsity. These two approaches are at dif-
ferent extremes in the array of choices available. One
allows arbitrary graphs, but makes a distributional re-
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striction through the use of copulas; this is a semipara-
metric extension of the Gaussian. The other approach
uses kernel density estimation and restricts the graphs
to trees and forests; in this case the model is fully
nonparametric, at the expense of structural restrictions.
We describe two-step estimation methods for both ap-
proaches. We also outline some statistical theory for
the methods, and compare them in some examples.
This article is in part a digest of two recent research
articles where these methods first appeared, Liu, Laf-
ferty and Wasserman (2009) and Liu et al. (2011).

The methods we present here are relatively simple,
and many more possibilities remain for nonparametric
graphical modeling. But as we hope to demonstrate,
a little nonparametricity can go a long way.

2. TWO FAMILIES OF NONPARAMETRIC
GRAPHICAL MODELS

The graph of a random vector is a useful way of ex-
ploring the underlying distribution. If X = (X1, . . . ,

Xd) is a random vector with distribution P , then the
undirected graph G = (V ,E) corresponding to P con-
sists of a vertex set V and an edge set E where V has d

elements, one for each variable Xi . The edge between
(i, j) is excluded from E if and only if Xi is indepen-
dent of Xj , given the other variables X\{i,j} ≡ (Xs : 1 ≤
s ≤ d, s �= i, j), written

Xi � Xj |X\{i,j}.(2.1)
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Nonparanormal Forest densities

Univariate marginals nonparametric nonparametric
Bivariate marginals determined by Gaussian copula nonparametric
Graph unrestricted acyclic

FIG. 1. Comparison of properties of the nonparanormal and forest-structured densities.

The general form for a (strictly positive) probability
density encoded by an undirected graph G is

p(x) = 1

Z(f )
exp

( ∑
C∈Cliques(G)

fC(xC)

)
,(2.2)

where the sum is over all cliques, or fully connected
subsets of vertices of the graph. In general, this is what
we mean by a nonparametric graphical model. It is the
graphical model analog of the general nonparametric
regression model. Model (2.2) has two main ingredi-
ents, the graph G and the functions {fC}. However,
without further assumptions, it is much too general to
be practical. The main difficulty in working with such a
model is the normalizing constant Z(f ), which cannot,
in general, be efficiently computed or approximated.

In the spirit of nonparametric estimation, we can
seek to impose structure on either the graph or the
functions fC in order to get a flexible and use-
ful family of models. One approach parallels the
ideas behind sparse additive models for regression.
Specifically, we replace the random variable X =
(X1, . . . ,Xd) by the transformed random variable
f (X) = (f1(X1), . . . , fd(Xd)), and assume that f (X)

is multivariate Gaussian. This results in a nonparamet-
ric extension of the Normal that we call the nonpara-
normal distribution. The nonparanormal depends on
the univariate functions {fj }, and a mean μ and co-
variance matrix �, all of which are to be estimated
from data. While the resulting family of distributions
is much richer than the standard parametric Normal
(the paranormal), the independence relations among
the variables are still encoded in the precision matrix
� = �−1, as we show below.

The second approach is to force the graphical struc-
ture to be a tree or forest, where each pair of vertices is
connected by at most one path. Thus, we relax the dis-
tributional assumption of normality, but we restrict the
allowed family of undirected graphs. The complexity
of the model is then regulated by selecting the edges to
include, using cross validation.

Figure 1 summarizes the tradeoffs made by these
two families of models. The nonparanormal can be
thought of as an extension of additive models for re-
gression to graphical modeling. This requires estimat-

ing the univariate marginals; in the copula approach,
this is done by estimating the functions fj (x) =
μj + σj�

−1(Fj (x)), where Fj is the distribution
function for variable Xj . After estimating each fj ,
we transform to (assumed) jointly Normal via Z =
(f1(X1), . . . , fd(Xd)) and then apply methods for
Gaussian graphical models to estimate the graph. In
this approach, the univariate marginals are fully non-
parametric, and the sparsity of the model is regu-
lated through the inverse covariance matrix, as for the
graphical lasso, or “glasso” (Banerjee, El Ghaoui and
d’Aspremont, 2008; Friedman, Hastie and Tibshirani,
2007).1 The model is estimated in a two-stage proce-
dure; first the functions fj are estimated, and then in-
verse covariance matrix � is estimated. The high-level
relationship between linear regression models, Gaus-
sian graphical models and their extensions to additive
and high-dimensional models is summarized in Fig-
ure 2.

In the forest graph approach, we restrict the graph
to be acyclic, and estimate the bivariate marginals
p(xi, xj ) nonparametrically. In light of equation (4.1),
this yields the full nonparametric family of graphical
models having acyclic graphs. Here again, the estima-
tion procedure is two-stage; first the marginals are esti-
mated, and then the graph is estimated. Sparsity is reg-
ulated through the edges (i, j) that are included in the
forest.

Clearly these are just two tractable families within
the very large space of possible nonparametric graphi-
cal models specified by equation (2.2). Many interest-
ing research possibilities remain for novel nonparamet-
ric graphical models that make different assumptions;
we discuss some possibilities in a concluding section.

1Throughout the paper we use the term graphical lasso, or glasso,
coined by Friedman, Hastie and Tibshirani (2007) to refer to
the solution obtained by �1-regularized log-likelihood under the
Gaussian graphical model. This estimator goes back at least to
Yuan and Lin (2007), and an iterative lasso algorithm for doing
the optimization was first proposed by Banerjee, El Ghaoui and
d’Aspremont (2008). In our experiments we use the R packages
glasso (Friedman, Hastie and Tibshirani, 2007) and huge to im-
plement this algorithm.
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Assumptions Dimension Regression Graphical models

Parametric low linear model multivariate Normal
high lasso graphical lasso

Nonparametric low additive model nonparanormal
high sparse additive model sparse nonparanormal

FIG. 2. Comparison of regression and graphical models. The nonparanormal extends additive models to the graphical model setting.
Regularizing the inverse covariance leads to an extension to high dimensions, which parallels sparse additive models for regression.

We now discuss details of these two model families,
beginning with the nonparanormal.

3. THE NONPARANORMAL

We say that a random vector X = (X1, . . . ,Xd)T has
a nonparanormal distribution and write

X ∼ NPN(μ,�,f )

in case there exist functions {fj }dj=1 such that Z ≡
f (X) ∼ N(μ,�), where f (X) = (f1(X1), . . . ,

fd(Xd)). When the fj ’s are monotone and differen-
tiable, the joint probability density function of X is
given by

pX(x) = 1

(2π)d/2|�|1/2

· exp
{
−1

2

(
f (x) − μ

)T
�−1(f (x) − μ

)}
(3.1)

·
d∏

j=1

|f ′
j (xj )|,

where the product term is a Jacobian.
Note that the density in (3.1) is not identifiable—we

could scale each function by a constant, and scale the
diagonal of � in the same way, and not change the den-
sity. To make the family identifiable we demand that fj

preserves marginal means and variances.

μj = E(Zj ) = E(Xj ) and
(3.2)

σ 2
j ≡ �jj = Var(Zj ) = Var(Xj ).

These conditions only depend on diag(�), but not the
full covariance matrix.

Now, let Fj (x) denote the marginal distribution
function of Xj . Since the component fj (Xj ) is Gaus-
sian, we have that

Fj (x) = P(Xj ≤ x)

= P
(
Zj ≤ fj (x)

)= �

(
fj (x) − μj

σj

)
which implies that

fj (x) = μj + σj�
−1(Fj (x)).(3.3)

The form of the density in (3.1) implies that the con-
ditional independence graph of the nonparanormal is
encoded in � = �−1, as for the parametric Normal,
since the density factors with respect to the graph of
�, and therefore obeys the global Markov property of
the graph.

In fact, this is true for any choice of identification
restrictions; thus it is not necessary to estimate μ or σ

to estimate the graph, as the following result shows.

LEMMA 3.1. Define

hj (x) = �−1(Fj (x)),(3.4)

and let � be the covariance matrix of h(X). Then Xj �
Xk|X\{j,k} if and only if �−1

jk = 0.

PROOF. We can rewrite the covariance matrix as

�jk = Cov(Zj ,Zk) = σjσk Cov(hj (Xj ), hk(Xk)).

Hence � = D�D and

�−1 = D−1�−1D−1,

where D is the diagonal matrix with diag(D) = σ . The
zero pattern of �−1 is therefore identical to the zero
pattern of �−1. �

Figure 3 shows three examples of 2-dimensional
nonparanormal densities. The component functions are
taken to be from three different families of monotonic
functions—one using power transforms, one using lo-
gistic transforms and another using sinusoids.

fα(x) = sign(x)|x|α,

gα(x) = 	x
 + 1

1 + exp{−α(x − 	x
 − 1/2)} ,

hα(x) = x + sin(αx)

α
.

The covariance in each case is � = (1 0.5
0.5 1

)
, and the

mean is μ = (0,0). It can be seen how the concav-
ity and number of modes of the density can change
with different nonlinearities. Clearly the nonparanor-
mal family is much richer than the Normal family.



522 J. LAFFERTY, H. LIU AND L. WASSERMAN

FIG. 3. Densities of three 2-dimensional nonparanormals. The left plots have component functions of the form fα(x) = sign(x)|x|α , with
α1 = 0.9 and α2 = 0.8. The center plots have component functions of the form gα(x) = 	x
+ 1/(1+ exp(−α(x −	x
− 1/2))) with α1 = 10
and α2 = 5, where x − 	x
 is the fractional part. The right plots have component functions of the form hα(x) = x + sin(αx)/α, with α1 = 5
and α2 = 10. In each case μ = (0,0) and � = ( 1 0.5

0.5 1
)
.

The assumption that f (X) = (f1(X1), . . . , fd(Xd))

is Normal leads to a semiparametric model where only
one-dimensional functions need to be estimated. But
the monotonicity of the functions fj , which map onto
R, enables computational tractability of the nonpara-
normal. For more general functions f , the normalizing
constant for the density

pX(x) ∝ exp
{
−1

2

(
f (x) − μ

)T
�−1(f (x) − μ

)}
cannot be computed in closed form.

3.1 Connection to Copulæ

If Fj is the distribution of Xj , then Uj = Fj (Xj ) is
uniformly distributed on (0,1). Let C denote the joint
distribution function of U = (U1, . . . ,Ud), and let F

denote the distribution function of X. Then we have
that

F(x1, . . . , xd)
(3.5)

= P(X1 ≤ x1, . . . ,Xd ≤ xd)

= P
(
F1(X1)

(3.6)
≤ F1(x1), . . . ,Fd(Xd) ≤ Fd(xd)

)

= P
(
U1 ≤ F1(x1), . . . ,Ud ≤ Fd(xd)

)
(3.7)

= C(F1(x1), . . . ,Fd(xd)).(3.8)

This is known as Sklar’s theorem (Sklar, 1959), and C

is called a copula. If c is the density function of C, then

p(x1, . . . , xd)
(3.9)

= c(F1(x1), . . . ,Fd(xd))

d∏
j=1

p(xj ),

where p(xj ) is the marginal density of Xj . For the non-
paranormal we have

F(x1, . . . , xd)
(3.10)

= �μ,�(�−1(F1(x1)), . . . ,�
−1(Fd(xd))),

where �μ,� is the multivariate Gaussian cdf, and � is
the univariate standard Gaussian cdf.

The Gaussian copula is usually expressed in terms
of the correlation matrix, which is given by R =
diag(σ )−1� diag(σ )−1. Note that the univariate mar-
ginal density for a Normal can be written as p(xj ) =
1
σj

φ(uj ) where uj = (xj − μj)/σj . The multivariate
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Normal density can thus be expressed as

pμ,�(x1, . . . , xd)

= 1

(2π)d/2|R|1/2∏d
j=1 σj

(3.11)

· exp
(
−1

2
uT R−1u

)
= 1

|R|1/2 exp
(
−1

2
uT (R−1 − I )u

)
(3.12)

·
d∏

j=1

φ(uj )

σj

.

Since the distribution Fj of the j th variable satisfies
Fj (xj ) = �((xj − μj)/σj ) = �(uj ), we have that

(Xj − μj)/σj
d= �−1(Fj (Xj )). The Gaussian copula

density is thus

c(F1(x1), . . . ,Fd(xd))

= 1

|R|1/2 exp
{
−1

2
�−1(F (x))T(3.13)

· (R−1 − I )�−1(F (x))

}
,

where

�−1(F (x)) = (�−1(F1(x1)), . . . ,�
−1(Fd(xd))).

This is seen to be equivalent to (3.1) using the chain
rule and the identity

(�−1)′(η) = 1

φ(�−1(η))
.(3.14)

3.2 Estimation

Let X(1), . . . ,X(n) be a sample of size n where
X(i) = (X

(i)
1 , . . . ,X

(i)
d )T ∈ R

d . We’ll design a two-step
estimation procedure where first the functions fj are
estimated, and then the inverse covariance matrix �

is estimated, after transforming to approximately Nor-
mal.

In light of (3.4) we define

ĥj (x) = �−1(F̃j (x)),

where F̃j is an estimator of Fj . A natural candidate for
F̃j is the marginal empirical distribution function

F̂j (t) ≡ 1

n

n∑
i=1

1{X(i)
j ≤t}.

However, in this case ĥj (x) blows up at the largest and

smallest values of X
(i)
j . For the high-dimensional set-

ting where n is small relative to d , an attractive alter-
native is to use a truncated or Winsorized2 estimator,

F̃j (x) =
⎧⎨⎩

δn, if F̂j (x) < δn,
F̂j (x), if δn ≤ F̂j (x) ≤ 1 − δn,
(1 − δn), if F̂j (x) > 1 − δn,

(3.15)

where δn is a truncation parameter. There is a bias–
variance tradeoff in choosing δn; increasing δn in-
creases the bias while it decreases the variance.

Given this estimate of the distribution of variable Xj ,
we then estimate the transformation function fj by

f̃j (x) ≡ μ̂j + σ̂j h̃j (x),(3.16)

where

h̃j (x) = �−1(F̃j (x))

and μ̂j and σ̂j are the sample mean and standard devi-
ation.

μ̂j ≡ 1

n

n∑
i=1

X
(i)
j and σ̂j =

√√√√1

n

n∑
i=1

(
X

(i)
j − μ̂j

)2
.

Now, let Sn(f̃ ) be the sample covariance matrix of
f̃ (X(1)), . . . , f̃ (X(n)); that is,

Sn(f̃ ) ≡ 1

n

n∑
i=1

(
f̃
(
X(i))− μn(f̃ )

)
(3.17)

· (f̃ (X(i))− μn(f̃ )
)T

,

μn(f̃ ) ≡ 1

n

n∑
i=1

f̃
(
X(i)).

We then estimate � using Sn(f̃ ). For instance, the
maximum likelihood estimator is �̂MLE

n = Sn(f̃ )−1.
The �1-regularized estimator is

�̂n = arg min
�

{tr(�Sn(f̃ ))

(3.18)
− log |�| + λ‖�‖1},

where λ is a regularization parameter, and ‖�‖1 =∑d
j=1

∑d
k=1 |�jk|. The estimated graph is then Ên =

{(j, k) : �̂jk �= 0}.
Thus we use a two-step procedure to estimate the

graph:

2After Charles P. Winsor, the statistician whom John Tukey
credited with his conversion from topology to statistics (Mallows,
1990).
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(1) Replace the observations, for each variable, by
their respective Normal scores, subject to a Winsorized
truncation.

(2) Apply the graphical lasso to the transformed
data to estimate the undirected graph.

The first step is noniterative and computationally ef-
ficient. The truncation parameter δn is chosen to be

δn = 1

4n1/4
√

π logn
(3.19)

and does not need to be tuned. As will be shown in
Theorem 3.1, such a choice makes the nonparanormal
amenable to theoretical analysis.

3.3 Statistical Properties of Sn( ˜f )

The main technical result is an analysis of the covari-
ance of the Winsorized estimator above. In particular,
we show that under appropriate conditions,

max
j,k

|Sn(f̃ )jk − Sn(f )jk| = OP

(√
logd + log2 n

n1/2

)
,

where Sn(f̃ )jk denotes the (j, k) entry of the matrix
Sn(f̃ ). This result allows us to leverage the significant
body of theory on the graphical lasso (Rothman et al.,
2008; Ravikumar et al., 2009) which we apply in step
two.

THEOREM 3.1. Suppose that d = nξ , and let f̃ be
the Winsorized estimator defined in (3.16) with δn =

1
4n1/4

√
π logn

. Define

C(M,ξ) ≡ 48√
πξ

(√
2M − 1

)
(M + 2)

for M,ξ > 0. Then for any ε ≥ C(M,ξ)

√
logd+log2 n

n1/2

and sufficiently large n, we have

P

(
max
jk

|Sn(f̃ )jk − Sn(f )jk| > ε
)

≤ c1d

(nε2)2ξ
+ c2d

nMξ−1 + c3 exp
(
− c4n

1/2ε2

logd + log2 n

)
,

where c1, c2, c3, c4 are positive constants.

The proof of this result involves a detailed Gaussian
tail analysis, and is given in Liu, Lafferty and Wasser-
man (2009).

Using Theorem 3.1 and the results of Rothman et al.
(2008), it can then be shown that the precision matrix is

estimated at the following rates in the Frobenius norm
and the �2-operator norm:

‖�̂n − �0‖F = OP

(√
(s + d) logd + log2 n

n1/2

)
and

‖�̂n − �0‖2 = OP

(√
s logd + log2 n

n1/2

)
,

where

s ≡ Card
({(i, j) ∈ {1, . . . , d}{1, . . . , d}|

�0(i, j) �= 0, i �= j})
is the number of nonzero off-diagonal elements of the
true precision matrix.

Using the results of Ravikumar et al. (2009), it can
also be shown, under appropriate conditions, that the
sparsity pattern of the precision matrix is estimated ac-
curately with high probability. In particular, the non-
paranormal estimator �̂n satisfies

P(G(�̂n,�0)) ≥ 1 − o(1),

where G(�̂n,�0) is the event{
sign(�̂n(j, k)) = sign(�0(j, k)),∀j, k ∈ {1, . . . , d}}.

We refer to Liu, Lafferty and Wasserman (2009) for the
details of the conditions and proofs. These ÕP (n−1/4)

rates are slower than the ÕP (n−1/2) rates obtainable
for the graphical lasso. However, in more recent work
(Liu et al., 2012) we use estimators based on Spear-
man’s rho and Kendall’s tau statistics to obtain the
parametric rate.

4. FOREST DENSITY ESTIMATION

We now describe a very different, but equally flexi-
ble and useful approach. Rather than assuming a trans-
formation to normality and an arbitrary undirected
graph, we restrict the graph to be a tree or forest, but
allow arbitrary nonparametric distributions.

Let p∗(x) be a probability density with respect to
Lebesgue measure μ(·) on R

d , and let X(1), . . . ,X(n)

be n independent identically distributed R
d -valued

data vectors sampled from p∗(x) where X(i) = (X
(i)
1 ,

. . . ,X
(i)
d ). Let Xj denote the range of X

(i)
j , and let

X = X1 × · · · × Xd .
A graph is a forest if it is acyclic. If F is a d-node

undirected forest with vertex set VF = {1, . . . , d} and
edge set EF ⊂ {1, . . . , d} × {1, . . . , d}, the number of
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edges satisfies |EF | < d . We say that a probability den-
sity function p(x) is supported by a forest F if the den-
sity can be written as

pF (x) = ∏
(i,j)∈EF

p(xi, xj )

p(xi)p(xj )

∏
k∈VF

p(xk),(4.1)

where each p(xi, xj ) is a bivariate density on Xi ×Xj ,
and each p(xk) is a univariate density on Xk .

Let Fd be the family of forests with d nodes, and let
Pd be the corresponding family of densities.

Pd =
{
p ≥ 0 :

∫
X

p(x)dμ(x) = 1, and

(4.2)

p(x) satisfies (4.1) for some F ∈ Fd

}
.

Define the oracle forest density

q∗ = arg min
q∈Pd

D(p∗‖q)(4.3)

where the Kullback–Leibler divergence D(p‖q) be-
tween two densities p and q is

D(p‖q) =
∫

X
p(x) log

p(x)

q(x)
dx,(4.4)

under the convention that 0 log(0/q) = 0, and
p log(p/0) = ∞ for p �= 0. The following is straight-
forward to prove.

PROPOSITION 4.1. Let q∗ be defined as in (4.3).
There exists a forest F ∗ ∈ Fd , such that

q∗ = p∗
F ∗

(4.5)

= ∏
(i,j)∈EF∗

p∗(xi, xj )

p∗(xi)p∗(xj )

∏
k∈VF∗

p∗(xk),

where p∗(xi, xj ) and p∗(xi) are the bivariate and uni-
variate marginal densities of p∗.

For any density q(x), the negative log-likelihood risk
R(q) is defined as

R(q) = −E logq(X)
(4.6)

= −
∫

X
p∗(x) logq(x) dx.

It is straightforward to see that the density q∗ defined in
(4.3) also minimizes the negative log-likelihood loss.

q∗ = arg min
q∈Pd

D(p∗‖q)

(4.7)
= arg min

q∈Pd

R(q).

We thus define the oracle risk as R∗ = R(q∗). Using
Proposition 4.1 and equation (4.1), we have

R∗ = R(q∗) = R(p∗
F ∗)

= −
∫

X
p∗(x)

( ∑
(i,j)∈EF∗

log
p∗(xi, xj )

p∗(xi)p∗(xj )

(4.8)

+ ∑
k∈VF∗

log(p∗(xk))

)
dx

= − ∑
(i,j)∈EF∗

I (Xi;Xj) + ∑
k∈VF∗

H(Xk),

where

I (Xi;Xj) =
∫

Xi×Xj

p∗(xi, xj )

(4.9)

· log
p∗(xi, xj )

p∗(xi)p∗(xj )
dxi dxj

is the mutual information between the pair of variables
Xi , Xj , and

H(Xk) = −
∫

Xk

p∗(xk) logp∗(xk) dxk(4.10)

is the entropy.

4.1 A Two-Step Procedure

If the true density p∗(x) were known, by Proposi-
tion 4.1, the density estimation problem would be re-
duced to finding the best forest structure F ∗

d , satisfying

F ∗
d = arg min

F∈Fd

R(p∗
F )

(4.11)
= arg min

F∈Fd

D(p∗‖p∗
F ).

The optimal forest F ∗
d can be found by minimizing

the right-hand side of (4.8). Since the entropy term
H(X) = ∑

k H(Xk) is constant across all forests, this
can be recast as the problem of finding the maximum
weight spanning forest for a weighted graph, where
the weight of the edge connecting nodes i and j is
I (Xi;Xj). Kruskal’s algorithm (Kruskal, 1956) is a
greedy algorithm that is guaranteed to find a maximum
weight spanning tree of a weighted graph. In the setting
of density estimation, this procedure was proposed by
Chow and Liu (1968) as a way of constructing a tree
approximation to a distribution. At each stage the al-
gorithm adds an edge connecting that pair of variables
with maximum mutual information among all pairs not
yet visited by the algorithm, if doing so does not form a
cycle. When stopped early, after k < d − 1 edges have
been added, it yields the best k-edge weighted forest.
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Of course, the above procedure is not practical since
the true density p∗(x) is unknown. We replace the
population mutual information I (Xi;Xj) in (4.8) by
a plug-in estimate În(Xi;Xj), defined as

În(Xi;Xj) =
∫

Xi×Xj

p̂n(xi, xj )

(4.12)

· log
p̂n(xi, xj )

p̂n(xi)p̂n(xj )
dxi dxj ,

where p̂n(xi, xj ) and p̂n(xi) are bivariate and uni-
variate kernel density estimates. Given this estimated
mutual information matrix M̂n = [În(Xi;Xj)], we
can then apply Kruskal’s algorithm (equivalently, the
Chow–Liu algorithm) to find the best tree structure F̂n.

Since the number of edges of F̂n controls the number
of degrees of freedom in the final density estimator, an
automatic data-dependent way to choose it is needed.
We adopt the following two-stage procedure. First, we
randomly split the data into two sets D1 and D2 of sizes
n1 and n2; we then apply the following steps:

(1) Using D1, construct kernel density estimates of
the univariate and bivariate marginals and calculate
În1(Xi;Xj) for i, j ∈ {1, . . . , d} with i �= j . Construct

a full tree F̂
(d−1)
n1 with d − 1 edges, using the Chow–

Liu algorithm.
(2) Using D2, prune the tree F̂

(d−1)
n1 to find a forest

F̂
(k̂)
n1 with k̂ edges, for 0 ≤ k̂ ≤ d − 1.

Once F̂
(k̂)
n1 is obtained in Step 2, we can calculate

p̂
F̂

(k̂)
n1

according to (4.1), using the kernel density esti-

mates constructed in Step 1.

4.1.1 Step 1: Constructing a sequence of forests.
Step 1 is carried out on the dataset D1. Let K(·)
be a univariate kernel function. Given an evaluation
point (xi, xj ), the bivariate kernel density estimate for

(Xi,Xj ) based on the observations {X(s)
i ,X

(s)
j }s∈D1 is

defined as

p̂n1(xi, xj )
(4.13)

= 1

n1

∑
s∈D1

1

h2
2

K

(
X

(s)
i − xi

h2

)
K

(X
(s)
j − xj

h2

)
,

where we use a product kernel with h2 > 0 as the
bandwidth parameter. The univariate kernel density es-
timate p̂n1(xk) for Xk is

p̂n1(xk) = 1

n1

∑
s∈D1

1

h1
K

(
X

(s)
k − xk

h1

)
,(4.14)

where h1 > 0 is the univariate bandwidth.
We assume that the data lie in a d-dimensional unit

cube X = [0,1]d . To calculate the empirical mutual in-
formation În1(Xi;Xj), we need to numerically eval-
uate a two-dimensional integral. To do so, we calcu-
late the kernel density estimates on a grid of points.
We choose m evaluation points on each dimension,
x1i < x2i < · · · < xmi for the ith variable. The mutual
information În1(Xi;Xj) is then approximated as

În1(Xi;Xj)

= 1

m2

m∑
k=1

m∑
�=1

p̂n1(xki, x�j )(4.15)

· log
p̂n1(xki, x�j )

p̂n1(xki)p̂n1(x�j )
.

The approximation error can be made arbitrarily small
by choosing m sufficiently large. As a practical con-
cern, care needs to be taken that the factors p̂n1(xki)

and p̂n1(x�j ) in the denominator are not too small;
a truncation procedure can be used to ensure this.
Once the d × d mutual information matrix M̂n1 =
[În1(Xi;Xj)] is obtained, we can apply the Chow–Liu
(Kruskal) algorithm to find a maximum weight span-
ning tree (see Algorithm 1).

4.1.2 Step 2: Selecting a forest size. The full tree
F̂

(d−1)
n1 obtained in Step 1 might have high variance

when the dimension d is large, leading to overfitting in
the density estimate. In order to reduce the variance,
we prune the tree; that is, we choose an unconnected
tree with k edges. The number of edges k is a tuning
parameter that induces a bias–variance tradeoff.

In order to choose k, note that in stage k of the
Chow–Liu algorithm, we have an edge set E(k) (in the
notation of the Algorithm 1) which corresponds to a
forest F̂

(k)
n1 with k edges, where F

(0)
n1 is the union of d

disconnected nodes. To select k, we cross-validate over
the d forests F̂

(0)
n1 , F̂

(1)
n1 , . . . , F̂

(d−1)
n1 .

Algorithm 1 Tree construction (Kruskal/Chow–Liu)
Input: Data set D1 and the bandwidths h1, h2.
Initialize: Calculate M̂n1 , according to (4.13), (4.14)

and (4.15).
Set E(0) = ∅.
For k = 1, . . . , d − 1:

(1) Set (i(k), j (k)) ← arg max(i,j) M̂n1(i, j) such that
E(k−1) ∪ {(i(k), j (k))} does not contain a cycle;
(2) E(k) ← E(k−1) ∪ {(i(k), j (k))}.

Output: tree F̂
(d−1)
n1 with edge set E(d−1).
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Let p̂n2(xi, xj ) and p̂n2(xk) be defined as in (4.13)
and (4.14), but now evaluated solely based on the held-
out data in D2. For a density pF that is supported by a
forest F , we define the held-out negative log-likelihood
risk as

R̂n2(pF )

= − ∑
(i,j)∈EF

∫
Xi×Xj

p̂n2(xi, xj )

(4.16)

· log
p(xi, xj )

p(xi)p(xj )
dxi dxj

− ∑
k∈VF

∫
Xk

p̂n2(xk) logp(xk) dxk.

The selected forest is then F̂
(k̂)
n1 where

k̂ = arg min
k∈{0,...,d−1}

R̂n2(p̂F
(k)
n1

)(4.17)

and where p̂
F

(k)
n1

is computed using the density estimate

p̂n1 constructed on D1.
We can also estimate k̂ as

k̂ = arg max
k∈{0,...,d−1}

1

n2

· ∑
s∈D2

log
( ∏

(i,j)∈E
F(k)

p̂n1(X
(s)
i ,X

(s)
j )

p̂n1(X
(s)
i )p̂n1(X

(s)
j )

(4.18)

· ∏
�∈V

F(k)

p̂n1

(
X

(s)
�

))

= arg max
k∈{0,...,d−1}

1

n2
(4.19)

· ∑
s∈D2

log
( ∏

(i,j)∈E
F(k)

p̂n1(X
(s)
i ,X

(s)
j )

p̂n1(X
(s)
i )p̂n1(X

(s)
j )

)
.

This minimization can be efficiently carried out by it-
erating over the d − 1 edges in F̂

(d−1)
n1 .

Once k̂ is obtained, the final forest-based kernel den-
sity estimate is given by

p̂n(x) = ∏
(i,j)∈E(k̂)

p̂n1(xi, xj )

p̂n1(xi)p̂n1(xj )

∏
k

p̂n1(xk).(4.20)

Another alternative is to compute a maximum weight
spanning forest, using Kruskal’s algorithm, but with
held-out edge weights

ŵn2(i, j) = 1

n2

∑
s∈D2

log
p̂n1(X

(s)
i ,X

(s)
j )

p̂n1(X
(s)
i )p̂n1(X

(s)
j )

.(4.21)

In fact, asymptotically (as n2 → ∞) this gives an op-
timal tree-based estimator constructed in terms of the
kernel density estimates p̂n1 .

4.2 Statistical Properties

The statistical properties of the forest density estima-
tor can be analyzed under the same type of assumptions
that are made for classical kernel density estimation.
In particular, assume that the univariate and bivariate
densities lie in a Hölder class with exponent β . Under
this assumption the minimax rate of convergence in the
squared error loss is O(nβ/(β+1)) for bivariate densities
and O(n2β/(2β+1)) for univariate densities. Technical
assumptions on the kernel yield L∞ concentration re-
sults on kernel density estimation (Giné and Guillou,
2002).

Choose the bandwidths h1 and h2 to be used in the
one-dimensional and two-dimensional kernel density
estimates according to

h1 �
(

logn

n

)1/(1+2β)

,(4.22)

h2 �
(

logn

n

)1/(2+2β)

.(4.23)

This choice of bandwidths ensures the optimal rate of
convergence. Let P (k)

d be the family of d-dimensional
densities that are supported by forests with at most k

edges. Then

P (0)
d ⊂ P (1)

d ⊂ · · · ⊂ P (d−1)
d .(4.24)

Due to this nesting property,

inf
qF ∈P (0)

d

R(qF ) ≥ inf
qF ∈P (1)

d

R(qF )

(4.25)
≥ · · · ≥ inf

qF ∈P (d−1)
d

R(qF ).

This means that a full spanning tree would generally be
selected if we had access to the true distribution. How-
ever, with access to finite data to estimate the densities
(p̂n1 ), the optimal procedure is to use fewer than d − 1
edges. The following result analyzes the excess risk re-
sulting from selecting the forest based on the heldout
risk R̂n2 .

THEOREM 4.1. Let p̂
F̂

(k)
d

be the estimate with

|E
F̂

(k)
d

| = k obtained after the first k iterations of the

Chow–Liu algorithm. Then under (omitted) techni-
cal assumptions on the densities and kernel, for any
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1 ≤ k ≤ d − 1,

R(p̂
F̂

(k)
d

) − inf
qF ∈P (k)

d

R(qF )

(4.26)

= OP

(
k

√
logn + logd

nβ/(1+β)
+ d

√
logn + logd

n2β/(1+2β)

)
and

R(p̂
F̂

(k̂)
d

) − min
0≤k≤d−1

R(p̂
F̂

(k)
d

)

= OP

(
(k∗ + k̂)

√
logn + logd

nβ/(1+β)
(4.27)

+ d

√
logn + logd

n2β/(1+2β)

)
,

where k̂ = arg min0≤k≤d−1 R̂n2(p̂F̂
(k)
d

) and k∗ =
arg min0≤k≤d−1 R(p̂

F̂
(k)
d

).

The main work in proving this result lies in estab-
lishing bounds such as

sup
F∈F (k)

d

|R(p̂F ) − R̂n2(p̂F )|
(4.28)

= OP

(
φn(k) + ψn(d)

)
,

where R̂n2 is the held-out risk, under the notation

φn(k) = k

√
logn + logd

nβ/(β+1)
,(4.29)

ψn(d) = d

√
logn + logd

n2β/(1+2β)
.(4.30)

For the proof of this and related results, see Liu et al.
(2011). Using this, one easily obtains

R(p̂
F̂

(k̂)
d

) − R(p̂
F̂

(k∗)
d

)

= R(p̂
F̂

(k̂)
d

) − R̂n2(p̂F̂
(k̂)
d

)(4.31)

+ R̂n2(p̂F̂
(k̂)
d

) − R(p̂
F̂

(k∗)
d

)

= OP

(
φn(k̂) + ψn(d)

)
(4.32)

+ R̂n2(p̂F̂
(k̂)
d

) − R(p̂
F̂

(k∗)
d

)

≤ OP

(
φn(k̂) + ψn(d)

)
(4.33)

+ R̂n2(p̂F̂
(k∗)
d

) − R(p̂
F̂

(k∗)
d

)

= OP

(
φn(k̂) + φn(k

∗) + ψn(d)
)
,(4.34)

where (4.33) follows from the fact that k̂ is the mini-
mizer of R̂n2(·). This result allows the dimension d to

increase at a rate o(
√

n2β/(1+2β)/ logn), and the num-

ber of edges k to increase at a rate o(
√

nβ/(1+β)/ logn),
with the excess risk still decreasing to zero asymptoti-
cally.

Note that the minimax rate for 2-dimensional ker-
nel density estimation under our stated conditions is
n−β/(β+1). The rate above is essentially the square root
of this rate, up to logarithmic factors. This is because a
higher order kernel is used, which may result in nega-
tive values. Once we correct these negative values, the
resulting estimated density will no longer integrate to
one. The slower rate is due to a very simple truncation
technique to correct the higher-order kernel density es-
timator to estimate mutual information. Current work
is investigating a different version of the higher order
kernel density estimator with more careful correction
techniques, for which it is possible to achieve the opti-
mal minimax rate.

In theory the bandwidths are chosen as in (4.22) and
(4.23), assuming β is known. In our experiments pre-
sented below, the bandwidth hk for the 2-dimensional
kernel density estimator is chosen according to the
Normal reference rule

hk = 1.06 · min
{
σ̂k,

q̂k,0.75 − q̂k,0.25

1.34

}
(4.35)

· n−1/(2β+2),

where σ̂k is the sample standard deviation of
{X(s)

k }s∈D1 , and q̂k,0.75, q̂k,0.25 are the 75% and 25%

sample quantiles of {X(s)
k }s∈D1 , with β = 2. See

Wasserman (2006) for a discussion of this choice of
bandwidth.

5. EXAMPLES

5.1 Gene–Gene Interaction Graphs

The nonparanormal and Gaussian graphical model
can construct very different graphs. Here we consider
a data set based on Affymetrix GeneChip microar-
rays for the plant Arabidopsis thaliana (Wille et al.,
2004) (see Figure 4). The sample size is n = 118. The
expression levels for each chip are pre-processed by
log-transformation and standardization. A subset of 40
genes from the isoprenoid pathway is chosen for anal-
ysis.

While these data are often treated as multivariate
Gaussian, the nonparanormal and the glasso give very
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FIG. 4. Arabidopsis thaliana is a small flowering plant; it was the
first plant genome to be sequenced, and its roughly 27,000 genes
and 35,000 proteins have been actively studied. Here we consider
a data set based on Affymetrix GeneChip microarrays with sam-
ple size n = 118, for which d = 40 genes have been selected for
analysis.

different graphs over a wide range of regularization
parameters, suggesting that the nonparametric method
could lead to different biological conclusions.

The regularization paths of the two methods are
compared in Figure 5. To generate the paths, we se-
lect 50 regularization parameters on an evenly spaced
grid in the interval [0.16,1.2]. Although the paths for
the two methods look similar, there are some subtle dif-

ferences. In particular, variables become nonzero in a
different order.

Figure 6 compares the estimated graphs for the two
methods at several values of the regularization param-
eter λ in the range [0.16,0.37]. For each λ, we show
the estimated graph from the nonparanormal in the first
column. In the second column we show the graph ob-
tained by scanning the full regularization path of the
glasso fit and finding the graph having the smallest
symmetric difference with the nonparanormal graph.
The symmetric difference graph is shown in the third
column. The closest glasso fit is different, with edges
selected by the glasso not selected by the nonpara-
normal, and vice-versa. The estimated transformation
functions for several genes are shown Figure 7, which
show non-Gaussian behavior.

Since the graphical lasso typically results in a large
parameter bias as a consequence of the �1 regu-
larization, it sometimes make sense to use the refit
glasso, which is a two-step procedure—in the first step,
a sparse inverse covariance matrix is obtained by the
graphical lasso; in the second step, a Gaussian model is
refit without �1 regularization, but enforcing the spar-
sity pattern obtained in the first step.

Figure 8 compares forest density estimation to the
graphical lasso and refit glasso. It can be seen that the
forest-based kernel density estimator has better gener-
alization performance. This is not surprising, given that
the true distribution of the data is not Gaussian. (Note
that since we do not directly compute the marginal uni-
variate densities in the nonparanormal, we are unable
to compute likelihoods under this model.) The held-
out log-likelihood curve for forest density estimation

FIG. 5. Regularization paths of both methods on the microarray data set. Although the paths for the two methods look similar, there are
some subtle differences.
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FIG. 6. The nonparanormal estimated graph for three values of λ = 0.2448,0.2661,0.30857 (left column), the closest glasso estimated
graph from the full path (middle) and the symmetric difference graph (right).

FIG. 7. Estimated transformation functions for four genes in the microarray data set, indicating non-Gaussian marginals. The correspond-
ing genes are among the nodes appearing in the symmetric difference graphs above.
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FIG. 8. Results on microarray data. Top: held-out log-likelihood of the forest density estimator (black step function), glasso (red stars) and
refit glasso (blue circles). Bottom: estimated graphs using the forest-based estimator (left) and the glasso (right), using the same node layout.

achieves a maximum when there are only 35 edges
in the model. In contrast, the held-out log-likelihood
curves of the glasso and refit glasso achieve maxima
when there are around 280 edges and 100 edges re-
spectively, while their predictive estimates are still in-
ferior to those of the forest-based kernel density esti-
mator. Figure 8 also shows the estimated graphs for the
forest-based kernel density estimator and the graphical
lasso. The graphs are automatically selected based on
held-out log-likelihood, and are clearly different.

5.2 Graphs for Equities Data

For the examples in this section we collected stock
price data from Yahoo! Finance (finance.yahoo.com).
The daily closing prices were obtained for 452 stocks
that consistently were in the S&P 500 index between
January 1, 2003 through January 1, 2011. This gave
us altogether 2015 data points, each data point corre-
sponds to the vector of closing prices on a trading day.

With St,j denoting the closing price of stock j on day
t , we consider the variables Xtj = log(St,j /St−1,j ) and
build graphs over the indices j . We simply treat the in-
stances Xt as independent replicates, even though they
form a time series. The data contain many outliers;
the reasons for these outliers include splits in a stock,
which increases the number of shares. We Winsorize
(or truncate) every stock so that its data points are
within three times the mean absolute deviation from
the sample average. The importance of this Winsoriza-
tion is shown below; see the “snake graph” in Fig-
ure 10. For the following results we use the subset of
the data between January 1, 2003 to January 1, 2008,
before the onset of the “financial crisis.” It is interest-
ing to compare to results that include data after 2008,
but we omit these for brevity.

The 452 stocks are categorized into 10 Global Indus-
try Classification Standard (GICS) sectors, including

http://finance.yahoo.com


532 J. LAFFERTY, H. LIU AND L. WASSERMAN

Target Corp. (Consumer Discr.)

Big Lots, Inc. (Consumer Discr.)
Costco Co. (Consumer Staples)
Family Dollar Stores (Consumer Discr.)
Kohl’s Corp. (Consumer Discr.)
Lowe’s Cos. (Consumer Discr.)
Macy’s Inc. (Consumer Discr.)
Wal-Mart Stores (Consumer Staples)

Yahoo Inc. (Information Tech.)

Amazon.com Inc. (Consumer Discr.)
eBay Inc. (Information Tech.)
NetApp (Information Tech.)

FIG. 9. Example neighborhoods in a forest graph for two stocks, Yahoo Inc. and Target Corp. The corresponding GICS industries are
shown in parentheses. (Consumer Discr. is short for Consumer Discretionary, and Information Tech. is short for In-
formation Technology.)

Consumer Discretionary (70 stocks), Con-
sumer Staples (35 stocks), Energy (37 stocks),
Financials (74 stocks), Health Care (46
stocks), Industrials (59 stocks), Information
Technology (64 stocks), Materials (29 stocks),
Telecommunications Services (6 stocks),
and Utilities (32 stocks). In the graphs shown
below, the nodes are colored according to the GICS
sector of the corresponding stock. It is expected that
stocks from the same GICS sectors should tend to be
clustered together, since stocks from the same GICS
sector tend to interact more with each other. This is in-
deed this case; for example, Figure 9 shows examples
of the neighbors of two stocks, Yahoo Inc. and Target
Corp., in the forest density graph.

Figures 10(a)–(c) show graphs estimated using the
glasso, nonparanormal, and forest density estimator on
the data from January 1, 2003 to January 1, 2008. There
are altogether n = 1257 data points and d = 452 di-
mensions. To estimate the glasso graph, we somewhat
arbitrarily set the regularization parameter to λ = 0.55,
which results in a graph that has 1316 edges, about
3 neighbors per node, and good clustering structure.
The resulting graph is shown in Figure 10(a). The
corresponding nonparanormal graph is shown in Fig-
ure 10(b). The regularization is chosen so that it too
has 1316 edges. Only nodes that have neighbors in one
of the graphs are shown; the remaining nodes are dis-
connected.

Since our dataset contains n = 1257 data points, we
directly apply the forest density estimator on the whole
dataset to obtain a full spanning tree of d − 1 = 451
edges. This estimator turns out to be very sensitive
to outliers, since it exploits kernel density estimates
as building blocks. In Figure 10(d) we show the es-
timated forest density graph on the stock data when
outliers are not trimmed by Winsorization. In this case

the graph is anomolous, with a snake-like character
that weaves in and out of the 10 GICS industries. In-
tuitively, the outliers make the two-dimensional den-
sities appear like thin “pancakes,” and densities with
similar orientations are clustered together. To address
this, we trim the outliers by Winsorizing at 3 MADs,
as described above. Figure 10(c) shows the estimated
forest graph, restricted to the same stocks shown for
the graphs in (a) and (b). The resulting graph has good
clustering with respect to the GICS sectors.

Figures 11(a)–(c) display the differences and edges
common to the glasso, nonparanormal and forest
graphs. Figure 11(a) shows the symmetric differ-
ence between the estimated glasso and nonparanormal
graphs, and Figure 11(b) shows the common edges.
Figure 11(c) shows the symmetric difference between
the nonparanormal and forest graphs, and Figure 11(d)
shows the common edges.

We refrain from drawing any hard conclusions about
the effectiveness of the different methods based on
these plots—how these graphs are used will depend
on the application. These results serve mainly to high-
light how very different inferences about the indepen-
dence relations can arise from moving from a Gaussian
model to a semiparametric model to a fully nonpara-
metric model with restricted graphs.

6. RELATED WORK

There is surprisingly little work on structure learn-
ing of nonparametric graphical models in high dimen-
sions. One piece of related work is sparse log-density
smoothing spline ANOVA models, introduced by Jeon
and Lin (2006). In such a model the log-density func-
tion is decomposed as the sum of a constant term, one-
dimensional functions (main effects), two-dimensional
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FIG. 10. Graphs build on S&P 500 stock data from Jan. 1, 2003 to Jan. 1, 2008. The graphs are estimated using (a) the glasso, (b) the
nonparanormal and (c) forest density estimation. The nodes are colored according to their GICS sector categories. Nodes are not shown that
have zero neighbors in both the glasso and nonparanormal graphs. Figure (d) shows the maximum weight spanning tree that results if the
data are not Winsorized to trim outliers.
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FIG. 11. Visualizations of the differences and similarities between the estimated graphs. The symmetric difference between the glasso and
nonparanormal graphs is shown in (a), and the edges common to the graphs are shown in (b). Similarly, the symmetric difference between
the nonparanormal and forest density estimate is shown in (c), and the common edges are shown in (d).
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functions (two-way interactions) and so on.

logp(x) = f (x)

(6.1)
≡ c +

d∑
j=1

fj (xj ) + ∑
j<k

fjk(xj , xk) + · · · .

The component functions satisfy certain constraints so
that the model is identifiable. In high dimensions, the
model is truncated up to second order interactions so
that the computation is still tractable. There is a close
connection between the log-density ANOVA model
and undirected graphical models. For a model with
only main effects and two-way interactions, we de-
fine a graph G = (V ,E) such that (i, j) ∈ E if and
only if fij �= 0. It can be seen that p(x) is Markov
to G. Jeon and Lin (2006) assume that these com-
ponent functions belong to certain reproducing kernel
Hilbert spaces (RKHSs) equipped with a RKHS norm
‖ · ‖K . To obtain a sparse estimation of the component
functions f (x), they propose a penalized M-estimator,

f̂ = arg max
f

{
1

n

n∑
i=1

exp
(
f
(
X(i)))

(6.2)

+
∫

f (x)ρ(x) dx + λJ (f )

}
,

where ρ(x) is some pre-defined positive density, and
J (f ) is a sparsity-inducing penalty that takes the form

J (f ) =
d∑

j=1

‖fj‖K + ∑
j<k

‖fjk‖K.(6.3)

Solving (6.2) only requires one-dimensional integrals
which can be efficiently computed. However, the op-
timization in (6.2) exploits a surrogate loss instead of
the log-likelihood loss, and is more difficult to analyze
theoretically.

Another related idea is to conduct structure learn-
ing using nonparametric decomposable graphical mod-
els (Schwaighofer et al., 2007). A distribution is a de-
composable graphical model if it is Markov to a graph
G = (V ,E) which has a junction tree representation,
which can be viewed as an extension of tree-based
graphical models. A junction tree yields a factorized
form

p(x) =
∏

C∈VT
p(xC)∏

S∈ET
p(xS)

,(6.4)

where VT denotes the set of cliques in V , and ET is the
set of separators, that is, the intersection of two neigh-
boring cliques in the junction tree. Exact search for the

junction tree structure that maximizes the likelihood is
usually computationally expensive. Schwaighofer et al.
(2007) propose a forward–backward strategy for non-
parametric structure learning. However, such a greedy
procedure does not guarantee that the global optimal
solution is found, and makes theoretical analysis chal-
lenging.

7. DISCUSSION

This paper has considered undirected graphical mod-
els for continuous data, where the general densities
take the form

p(x) ∝ exp
( ∑

C∈Cliques(G)

fC(xC)

)
.(7.1)

Such a general family is at least as difficult as the
general high-dimensional nonparametric regression
model. But, as for regression, simplifying assump-
tions can lead to tractable and useful models. We have
considered two approaches that make very different
tradeoffs between statistical generality and computa-
tional efficiency. The nonparanormal relies on esti-
mating one-dimensional functions, in a manner that
is similar to the way additive models estimate one-
dimensional regression functions. This allows arbitrary
graphs, but the distribution is semiparametric, via the
Gaussian copula. At the other extreme, when we re-
strict to acyclic graphs we can have fully nonpara-
metric bivariate and univariate marginals. This lever-
ages classical techniques for low-dimensional density
estimation, together with approximation algorithms
for constructing the graph. Clearly these are just two
among many possibilities for nonparametric graphical
modeling. We conclude, then, with a brief description
of a few potential directions for future work.

As we saw with the nonparanormal, if only the
graph is of interest, it may not be important to esti-
mate the functions accurately. More generally, to esti-
mate the graph it is not necessary to estimate the den-
sity. One of the most effective and theoretically well-
supported methods for estimating Gaussian graphs is
due to Meinshausen and Bühlmann (2006). In this ap-
proach, we regress each variable Xj onto all other
variables (Xk)k �=j using the lasso. This directly esti-
mates the set of neighbors N (j) = {k|(j, k) ∈ E} for
each node j in the graph, but the covariance matrix
is not directly estimated. Lasso theory gives condi-
tions and guarantees on these variable selection prob-
lems. This approach was adapted to the discrete case
by Ravikumar, Wainwright and Lafferty (2010), where
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the normalizing constant and thus the density can’t be
efficiently computed. This general strategy may be at-
tractive for graph selection in nonparametric graphical
models. In particular, each variable could be regressed
on the others using a nonparametric regression method
that performs variable selection; one such method with
theoretical guarantees is due to Lafferty and Wasser-
man (2008).

A different framework for nonparametricity involves
conditioning on a collection of observed explanatory
variables Z. Liu et al. (2010) develop a nonparamet-
ric procedure called Graph-optimized CART, or Go-
CART, to estimate the graph conditionally under a
Gaussian model. The main idea is to build a tree parti-
tion on the Z space just as in CART (classification and
regression trees), but to estimate a graph at each leaf
using the glasso. Oracle inequalities on risk minimiza-
tion and model selection consistency were established
for Go-CART by Liu et al. (2010). When Z is time,
graph-valued regression reduces to the time-varying
graph estimation problem (Chen et al., 2010; Kolar
et al., 2010; Zhou, Lafferty and Wasserman, 2010).

Another fruitful direction is the introduction of latent
variables. Even though the graphical model of the ob-
served variables X may be complex, when conditioned
on some latent explanatory variables Z, the graph may
be simplified. One straightforward approach is to build
mixtures of the models we consider here. A mixture of
nonparanormals will require new methods, to compute
the derivatives f ′

j (xj ). A mixture of forests could be
implemented using a kind of nonparametric EM algo-
rithm, with kernel density estimates over weighted data
in the M-step. But it is not easy to read off a graph from
a mixture model.

In parametric settings, Chandrasekaran, Parrilo and
Willsky (2010) and Choi et al. (2010) develop algo-
rithms and theory for learning graphical models with
latent variables. The first paper assumes the joint dis-
tribution of the observed and latent variables is a Gaus-
sian graphical model, and the second paper assumes
the joint distribution is discrete and factors according
to a forest. Since the nonparanormal and forest den-
sity estimator are nonparametric versions of the Gaus-
sian and forest graphical models for discrete data, we
expect similar techniques to those of Chandrasekaran,
Parrilo and Willsky (2010), Choi et al. (2010) can be
used to extend our methods to handle latent variables.
It would also be of interest to formulate nonparametric
extensions of low rank plus sparse covariance matrices.

No matter how the methodology develops, nonpara-
metric graphical models will at best be approximations

to the true distribution in many applications. Yet, there
is plenty of experience to show how incorrect models
can be useful. An ongoing challenge in nonparametric
graphical modeling will be to better understand how
the structure can be accurately estimated even when the
model is wrong.
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